08/07/2015

"Modélisation graphique probabiliste pour la maîtrise des risques, la fiabilité et la synthèse de lois de commande des systèmes complexes"

Résumé :
Mes travaux de recherche sont menés au Centre de Recherche en Automatique de Nancy (CRAN), dans le département Ingénierie des Systèmes Eco-Techniques (ISET) sous la responsabilité de B. Iung et de A. Thomas et le département Contrôle - Identification - Diagnostic (CID) sous la responsabilité de D. Maquin et de G. Millerioux. L'objectif principal de mes recherches est de formaliser des méthodes de construction de modèles probabilistes représentant les bons fonctionnements et les dysfonctionnements d'un système industriel. Ces modèles ont pour but de permettre l'évaluation des objectifs de fonctionnement du système (exigences opérationnelles, performances) et les conséquences en termes de fiabilité et de maîtrise des risques (exigences de sûreté). Ceci nécessite de modéliser les impacts de l'environnement sur le système et sur ses performances, mais aussi l'impact des stratégies de commande et des stratégies de maintenance sur l'état de santé du système. Pour plus de détails. A travers les différents travaux de thèses et collaborations, j'ai exploité différents formalismes de modélisation probabilistes. Les apports majeurs de nos contributions se déclinent en 3 points : • La modélisation des conséquences fonctionnelles des défaillances, structurée à partir des connaissances métiers. Nous avons développés les principes de modélisation par Réseau Bayésien (RB) permettant de relier la fiabilité et les effets des états de dégradation des composants à l'architecture fonctionnelle du système. Les composants et les modes de défaillances sont alors décrits naturellement par des variables multi-états ce qui est difficile à modéliser par les méthodes classiques de sûreté de fonctionnement. Nous proposons de représenter le modèle selon différents niveaux d'abstraction en relation avec l'analyse fonctionnelle. La modélisation par un modèle probabiliste relationnel (PRM) permet de capitaliser la connaissance par la création des classes génériques instanciées sur un système avec le principe des composants pris sur étagère. • Une modélisation dynamique de la fiabilité des systèmes pris dans leur environnement. Nous avons contribué lors de notre collaboration avec Bayesia à la modélisation de la fiabilité des systèmes par Réseau Bayésien Dynamique (RBD). Un RBD permet, grâce à la factorisation de la loi jointe, une complexité inférieure à une Chaîne de Markov ainsi qu'un paramétrage plus facile. La collaboration avec Bayesia a permis l'intégration dans Bayesialab (outil de modélisation) de ces extensions et notamment l'utilisation de paramètres variables dans le temps élargissant la modélisation des RBD à des processus Markoviens non homogènes. • La synthèse de la loi de commande pour l'optimisation de la fiabilité du système. Nous travaillons sur l'intégration de la fiabilité dans les objectifs de commande des systèmes sous contrainte de défaillances ou de défauts. Nous posons aujourd'hui le problème dans un contexte général de commande. Nous proposons une structuration du système de commande intégrant des fonctions d'optimisation et des fonctions d'évaluation de grandeurs probabilistes liées à la fiabilité du système. Nos travaux récents sont focalisés sur l'intégration, dans la boucle d'optimisation de la commande, des facteurs issues d'une analyse de sensibilité de la fiabilité du système par rapport aux composants.