27/11/2013

"Déconvolution et séparation d'images hyperspectrales en microscopie"
(Thèse Simon HENROT)

Résumé :
Les travaux présentés synthétisent mon activité de recherche au CRAN entre 2005 et 2013. Les projets menés s'inscrivent dans les domaines des problèmes inverses en traitement du signal et des images, de l'approximation parcimonieuse, de l'analyse d'images hyperspectrales et de la reconstruction d'images 3D. Je détaille plus particulièrement les travaux concernant la conception, l'analyse et l'utilisation d'algorithmes d'approximation parcimonieuse pour des problèmes inverses caractérisés par un dictionnaire mal conditionné. Dans un premier chapitre, je présente les algorithmes heuristiques conçus pour minimiser des critères mixtes L2-L0. Ce sont des algorithmes gloutons "bidirectionnels" définis en tant qu'extension de l'algorithme Orthogonal Least Squares (OLS). Leur développement est motivé par le constat empirique qu'OLS et ses versions dérivées se comportent bien lorsque le dictionnaire est une matrice mal conditionnée. Le deuxième chapitre est une partie applicative en microscopie de force atomique, où les algorithmes du premier chapitre sont utilisés avec un dictionnaire particulier dans le but de segmenter automatiquement des signaux. Cette segmentation permet finalement de fournir une cartographie 2D de différents paramètres électrostatiques et bio-mécaniques. Le troisième chapitre est une partie théorique visant à analyser les algorithmes gloutons OMP (Orthogonal Matching Pursuit) et OLS. Une première analyse de reconstruction exacte par OLS en k itérations est proposée. De plus, une comparaison poussée des conditions de reconstruction exacte lorsqu'un certain nombre d'itérations ont déjà été effectuées fournit un éclairage sur le meilleur comportement d'OLS (par rapport à OMP) pour les problèmes mal conditionnés. Dans un quatrième chapitre, je dresse quelques perspectives méthodologiques et appliquées dans le domaine de l'analyse parcimonieuse en lien avec les chapitres précédents.