"Identification de Systèmes Dynamiques Hybrides : géométrie, parcimonie, et non-linéarités"
(Thèse Van Luong LE)
Résumé :
En automatique, l'obtention d'un modéle du système est la pierre angulaire des procédures comme la synthèse d'une commande, la détection des défaillances, la prédiction... Cette thèse traite de l'identification d'une classe de systèmes complexes, les systèmes dynamiques hybrides. Ces systèmes impliquent l'interaction de comportements continus et discrets. Le but est de construire un modèle à partir de mesures expérimentales d'entrée et de sortie. Une nouvelle approche pour l'identification de systèmes hybrides linéaires basée sur les propriétés géométriques des systèmes hybrides dans l'espace des paramètres est proposée. Un nouvel algorithme est ensuite proposé pour le calcul de la solution la plus parcimonieuse (ou creuse) de systèmes d'équations linéaires sous-déterminés. Celui-ci permet d'améliorer une approche d'identification basée sur l'optimisation de la parcimonie du vecteur d'erreur. De plus, de nouvelles approches, basées sur des modèles à noyaux, sont proposées pour l'identification de systèmes hybrides non linéaires et de systèmes lisses par morceaux.