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Description: 

The emergent technology of Digital Twin (DT) is employed for several objectives in the 

manufacturing context and, among them, for predictive maintenance and Prognostic and Health 

Management (PM&PHM). The ad hoc DTs proposed in the literature are generally focused on one 

component of the manufacturing systems and on one/few services of the PM&PHM pipeline (ISO 

13374–2:2007), like state detection, or diagnosis, or health assessment, or prognostics, or 

maintenance optimisation. For example, Tao et al. (2018) presented a DT driven PM&PHM 

method for improving the accuracy of prognosis and applied it to a gearbox case study;  Aivaliotis 

et al. (2019) proposed a methodology to calculate the RUL of a machinery equipment by using 

DT and physics-based simulation models; Wang et al. (2019) presents a DT reference model for 

rotating machinery fault diagnosis; Liu et al. (2024) proposes a DT-based anomaly detection 

framework for real-time tool-condition monitoring in machining; Zappa et al. (2024) presented 

an ontology-based DT aiming at supporting the maintenance fault diagnosis decision-making 

process in manufacturing systems and applied it on a bearing of a laboratory platform. 

Recent review papers (van Dinter et al., 2022; Xiao et al., 2024) have provided deep states-of-

the-art in the field of DT for PM&PHM of production systems showing that nowadays the topic is 

http://www.cran.univ-lorraine.fr/
mailto:alexandre.voisin@univ-lorraine.fr
mailto:chiara.franciosi@univ-lorraine.fr
mailto:chiara.franciosi@univ-lorraine.fr


2 
 

quite explored in the literature and highlighting the interest of the scientific community on this 

research subject, as well as challenges and gaps. For example, one gap that emerged from van 

Dinter et al. (2022) is that most of the studies discussed the use of DTs on a component level, 

for instance, bearings or gearboxes, whereas system-level DTs aimed to perform predictive 

maintenance on a complete system (like production line or complex machine) are less common. 

Only one study, i.e. Xu et al., 2019, discusses the use of System-of-Systems DT for predictive 

maintenance of a whole shop floor. Similar results were found also in Xiao et al. (2024), who 

reported that current literature is mainly applied for fault detection of a single component of an 

equipment or machine. 

Therefore, a challenge is in the integration of several DTs providing different PM&PHM services 

for several components; it has been identified as a promising direction to enable system level 

PM&PHM.  

Toward this aim of connected DTs, recently the new concept of “Cognitive Digital Twin” (CDT) 

has emerged in the literature and proposed as an extended version of DT aiming to semantically 

interlink digital models enabling their seamless cooperation. The term CDT firstly appeared in 

the industry sector by Adl (2016) and was defined as “a digital representation, augmentation and 

intelligent companion of its physical twin as a whole, including its subsystems across all of its 

life cycles and evolution phases”. Currently, the CDT starts to be more explored in the scientific 

literature and shows a promising evolution of the DT concept towards a more intelligent, 

comprehensive, and full lifecycle representation of complex systems (Rožanec et al., 2022; 

Zheng et al. 2022). Particularly, the CDT can be envisioned as an extended version of DT 

(therefore, including the 3 main elements of a DT: (1) a physical entity, (2) a digital entity, and (3) 

the bidirectional connections between the virtual and physical entities) containing multiple DT 

models with unified semantics (Zheng et al., 2022). Also, a CDT leverage some human-like 

cognitive capabilities, such as attention, perception, memory, reasoning, learning, and 

problem-solving, in order to enable decision making in complex and uncertain environment. 

These features allow the CDT to continuously evolve with the real system throughout its 

lifecycle, adapting to dynamic changes and unpredictable disruptions (ElMaraghy & ElMaraghy 

2022). Although it seems that we're still a long way from achieving this objective in full, the fast 

development of digital technologies in a broad sense (including artificial intelligence, semantic 

technologies, machine learning, IIoT and ubiquitous sensing technologies) will enable achieve 

cognition capabilities at a certain level (Zheng et al., 2022).  

Thus, a revised CDT definition has been recently provided by Zheng et al. (2022): “Cognitive 

Digital Twin (CDT) is a digital representation of a physical system that is augmented with 

certain cognitive capabilities and support to execute autonomous activities; comprises a set 

of semantically interlinked digital models related to different lifecycle phases of the physical 

system including its subsystems and components; and evolves continuously with the 

physical system across the entire lifecycle”. 
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As evident from the definition, cognitive capabilities are essentials features that distinguish CDT 

from DT and enable a higher level of autonomy and intelligence, for example dealing with 

uncertain and evolving environment and generating dynamic strategies in an autonomous way.  

To enable these cognitive capabilities, some key technologies are essential. For example, 

perception and attention can be triggered using IoT and data-driven algorithms (Kaji et al., 2020; 

Zenisek et al., 2019). Memory can be obtained using persistent technologies like databases 

(including new types like NoSQL and timeseries databases) or domain knowledge technologies, 

like ontologies (Eirinakis et al., 2022). Reasoning capability can be enabled by employing AI 

algorithms (Barthelmey et al., 2019) as well as ontologies (Wang et al., 2021), whereas learning 

can be activated by machine learning algorithms (Khan et al., 2020).  

Some CDT architectures, their main elements and the key technologies enabling the CDT have 

been proposed in the literature. However a CDT conceptual and/or operational framework for 

the PM&PHM of production systems was not found. Moreover, as reported in the 

gaps/challenges of D’Amico et al. (2024), the enabling technologies for enhancing cognitive 

capabilities of DTs, such as ontologies, knowledge graphs, AI, machine learning 

techniques, are not sufficiently explored. According to this and the description provided 

above, the objective of the PhD is two-fold: (1) defining a CDT architecture and its main 

elements for enabling PM&PHM of production systems; (2) modelling and semantically 

integrating several DTs for enabling the collaboration of different components and/or PM&PHM 

services, and then supporting the PM&PHM of production systems. 

This objective logically leads to 2 main research questions (RQ1 and RQ2). The first research 

question arising is: 

• RQ1. What are the elements that must constitute a CDT functional architecture for 

enabling the PM&PHM of production systems?  

o RQ1.1 What are the technologies/methodologies habilitating the cognitive 

capabilities of a CDT for PM&PHM ? 

Considering that PM&PHM encompasses several steps (from Data Acquisition to Advisory 

Generation (Abbate et al., 2024)), a CDT framework should report the main “constituting 

elements” enabling the interaction among the PM&PHM steps of several components of a 

production system leveraging the cognitive capabilities.  For example, AI technologies and 

ontologies, both recognised as enablers of PM&PHM process and cognitive capabilities in DT, 

should be considered as one of the main elements, probably coupled with the human in the loop 

in order to fully achieve the cognition in CDT for PM&PHM.  

Indeed, as reported in many reviews (see for instance Biggio & Kastanis, 2020; Fink et al., 2020; 

Nguyen et al., 2023), all PM&PHM steps will benefit from leveraging data-driven AI algorithms. At 

the same time, the adoption of ontologies for PM&PHM enables knowledge representation, 

expressiveness and reasoning capabilities, inference potentialities and interoperability among 
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PM&PHM steps (Abadi et al., 2022; Franciosi et al., 2022; Karabulut et al., 2023). As a logical 

conclusion, the integration of both should lead to the emergence of a CDT enabling the seamless 

integration of PM&PHM steps for manufacturing systems. 

Furthermore, several advantages can be achieved through the coupling of data-driven methods 

(1) and knowledge-based methods (2) because they are complementary: the first (1) show 

advantages in terms of accessibility and accuracy, while the reliability could be poor; however, 

the second (2) have insufficient performance but good interpretability and context awareness (Li 

et al., 2022). As reported in Franciosi et al., (2024), a future research direction could be to explore 

the combination of machine learning, ontologies, and reasoning for the predictive maintenance 

of complex systems through the development of combined knowledge-based and data-driven 

approaches. On the one hand, machine learning algorithms can enable the extraction of 

concepts and patterns (as machine degradation models) from data or the calculation of 

information (as specific indices) that can then be enriched due to the querying performed by 

maintenance domain ontologies and rule-based reasoning on this input data. On the other hand, 

data from various sources and systems within a facility could be integrated to gather accurate 

information in order to create accurate models.  

The second research question arising is:  

• RQ2. How to model and semantically integrate several DTs for enabling PM&PHM of 

production systems? 

o RQ2.1. How to model the knowledge and organize data and information in order 

to enable the collaboration among several DTs related to different components 

and/or PM&PHM services, and then supporting the PM&PHM of production 

systems? 

Considered the above RQs, it is expected the exploration of the combination of ontologies and 

data-driven AI (such as deep learning) in each step or combination of steps of the PM&PHM 

framework for integrated predictive maintenance decisions on one specific component (one DT) 

and/or with other components of the considered system (several DTs). Therefore, the response 

to the RQ2 (and RQ2.1) will allow the implementation of the CDT architecture defined in 

response to the RQ1 (and RQ1.1). 

As reported in Franciosi et al. (2024), a possible future direction could relate to the development 

of a PM&PHM-integrated system through the employment of ontologies that could serve as the 

backbone for the integration of the PM&PHM steps. As such, the ontologies would work with 

other approaches and algorithms developed at different PM&PHM steps, and due to ontology’s 

capability to provide context awareness and perform reasoning, it will deduce the proper 

information for the algorithms along the PM&PHM pipeline. Also, when heterogeneous 

databases of production systems’ units are available, the ontology can provide a common 

semantic level, allowing for queries on heterogeneous databases (Medina-Oliva et al., 2014). 

Moreover, as recently reported by D’Amico et al. (2024), even if ontologies and knowledge graphs 
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are promising solutions for the semantic integration of heterogeneous DT models, further 

research is needed to explore their full potential. 
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