"Stabilisation d'une classe d'EDP non linéaire. Application à l'équation de Vlasov-Poisson."
(Thèse Karima SAIDI)
Résumé :
Les travaux présentés dans cette thèse portent sur la stabilisation d'une classe d'équations aux dérivées partielles non linéaires. Il s'agit d'un modèle discrétisé de l'équation de Vlasov-Poisson décrivant l'évolution spatio- temporelle, dans un plasma, d'une fonction de distribution de particules chargées. Dans une première étape, nous avons abordé la stabilisation des systèmes dynamiques en temps fixe (i.e. la stabilisation en temps fini avec un temps d'établissement uniformément borné). Des critères relaxant des résultats existants dans la littérature ont été établis. En effet, nous avons montré que, pour un système dynamique, la combinaison de la stabilité lente (au sens polynomiale) et de la stabilité rapide (au sens temps fini) conduit à une stabilité en temps fixe. Diverses applications sur le système de Vlasov-Poisson discrétisé concernent aussi le système double intégrateur avec observateur et les systèmes bilinéaires de dimension infinie où pour chacun de ces systèmes, le retour stabilisant et /ou les observateurs en temps fixe sont construits et testés numériquement. Dans une seconde étape, nous nous sommes intéressés à la stabilisation en temps petit des systèmes dynamiques variants dans le temps. En fait, la notion de temps petit est couramment utilisée dans la théorie de la commandabilité. Pour la stabilisation, ce temps petit est situé entre le temps fini et le temps fixe. Nous avons élaboré des résultats théoriques basés sur la méthode énergétique garantissant la convergence de la solution, vers zéro, en temps petit. Cela est obtenu moyennant une excitation temporelle d'une fonction positive non intégrable au sens de Lebesgue. Puis, nous avons appliqué nos résultats sur des exemples modèles comme l'équation de transport avec contrôle frontière, l'équation d'onde soumis à un contrôle frontière du type Wentzell. Également, pour les systèmes bilinéaires en dimension finie et infinie qui sont, en outre, des modèles types de Vlasov-Poisson discrétisé. Pour chaque système, nous avons élaboré son retour d'état dont la construction est basée sur l'intégration des excitations temporelles et uniformes.
Jury : | |
- Rapporteurs : | Driss BOUTAT Pr., Université d'Orléans INSA Centre Val de Loire |
Ines ELLOUZE MC. HDR, SCS & Nonlinear PDE, Université de Sfax | |
- Autres membres : | Présidente/Examinatrice : Catherine BONNET Directrice de Recherche à l'INRIA Paris, L2S Examinatrice : Salwa ELLOUMI Pr., LSA, Université de Carthage Directeurs : Mohamed BOUTAYEB Pr., CRAN, Université de Lorraine Chaker JAMMAZI Pr., LIM, Université de Tunis EL Manar |